Advantages and Disadvantages of Low VOC Vegetable Based Metalworking Fluids

John Burke, CMFS STLE Fellow
Global Director of Engineering Services

Alan Cross,
Senior Project Engineer
Houghton International Inc, Valley Forge Pennsylvania USA
Outline

• Metalworking Types
• Potential Areas for Use
• Advantages and Disadvantages
• Summary
Metalworking Fluids – Rule 1144

Are:

• Metal Removal Fluids
 Coolants, cutting oils
• Metal Protecting Fluids
 Rust inhibitors
• Metal Forming Fluids
 Stamping, drawing, forging
• Metal Treating Fluids
 Quench oils

Are Not:

• Metal Cleaning Fluids
 Parts washing soaps, detergents
Natural Vegetable Oils - Manufacturing

- Canola, Rapeseed
- Soybean
- Sunflower
- Mostly triglycerides
Triglycerides

Glycerol

Three Fatty Acids
Mineral Oil / Petroleum Oil

- No fatty acids
- No glycerol
- Alkanes, cycloalkanes, and various aromatic hydrocarbons
- Contain nitrogen, oxygen, and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium

- Lubricating oil = 16 carbon atoms
- Paraffin wax = 25 carbon atoms
- Asphalt = 35++ carbon atoms
Structures are Different

• Vegetable
• Mineral

Therefore performance should be different

• AND IT IS – Each has advantages and disadvantages over each other
Vegetable oil applications

Metalworking
- Metal removal fluids – emulsions, straight oils
- Metal protecting - Low VOC Rust Protectors
- Metal forming – wire drawing, stamping

Other
- Conventional and Fire resistant hydraulic oils
- Gear oils
- Way oils
- Spindle oils
Volatile Organic Compounds

VOC expressed as grams / liter
Per ASTM E1868-10

<table>
<thead>
<tr>
<th>Viscosity Grade cSt @ 40 Degrees C</th>
<th>Paraffinic Oil</th>
<th>Naphthenic Oil</th>
<th>Vegetable Oil - Canola</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>400</td>
<td>718</td>
<td>NA</td>
</tr>
<tr>
<td>9.6</td>
<td>50</td>
<td>130</td>
<td>NA</td>
</tr>
<tr>
<td>20.5</td>
<td>10</td>
<td>64</td>
<td>NA</td>
</tr>
<tr>
<td>39.0</td>
<td>< 1*</td>
<td>5*</td>
<td>< 1**</td>
</tr>
</tbody>
</table>

* Blended, two base stocks
** Food grade
Lubricity

- Determined by many standard lubricity tests
- Mineral oil = good
- Vegetable oils = better

Note: Without additive vegetable oils will generally outperform mineral oil in standard lubricity tests

Reference
- Pin and V block
- 4 ball
- Tap torque
- Hydraulic pump/wear tests, such as ASTM D2882 and ASTM D2271
Pin and V Block

- V blocks are clamped around the spinning pin and pressure is increased until failure.
Four Ball

- One ball spins on top of three under pressure to scar the surface of the three.
Tapping Torque

• Measures the amount of torque required to thread a standardized part.
Hydraulic Pump/Wear Tests

- ASTM D-2882 – V104C pump test
Flash Point

- Mineral Oil = 300°F – 400°F (typical 390°F)
- Canola Oil = 620°F - 625°F
- Soybean = 605°F - 615°F
- Method ASTM D92
Biodegradability

Biodegradation is a process of chemical breakdown or transformation of a substance caused by micro-organisms (bacteria, fungi) or their enzymes.

- Mineral Oil = Considered to be slow to biodegrade
- Canola, Soy = Considered readily biodegradable

- Reference: OECD 301 B (Organization for Economic Cooperation and Development)
 ASTM D-5864
 CEC EC-L-33-A-94 (Coordinating European Council)
Biodegradable – both good and bad

• Triglyceride – Breaks down into free fatty acids

• Fatty acids + Calcium + oil + alkali = grease
 – Especially problematic in wastewater treatment using Acid Alum treatment

• Can be so thick that it can be unpumpable

• Grease has no reclaimable potential!
Aquatic Toxicity

- Daphnia
- Fat head minnow
 - LC50 > 100 mg/L – “Practically Non-toxic”
 - LC50 > 1,000 mg/L – “Relatively Harmless”

- Note: Additive make or break toxic properties of fluids
Comment on Additives

Same for Mineral and Vegetable Oils

Aquatic Toxicity

Additive Percent by Weight
Oil and Grease Measurement

- EPA method 1664 and Standard Methods 5520B,F are used to determine oil and grease and hydrocarbons in wastewater – (hexane extraction, silica gel)

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Dose mg/L</th>
<th>Response 5520B mg/L</th>
<th>Recovery %</th>
<th>Hydrocarbon 5520F mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Oil</td>
<td>109</td>
<td>95</td>
<td>87.2</td>
<td>79</td>
</tr>
<tr>
<td>20.5 cSt Naphthenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canola Oil</td>
<td>105</td>
<td>100</td>
<td>95.8</td>
<td>6</td>
</tr>
<tr>
<td>39 cSt Food Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Visible Sheen

- Mineral oil = Yes
- Vegetable oil = Yes
Renewable Resource

- Mineral Oil = no
- All vegetable oils = yes
Competes with existing food crops

- Mineral oil = no
- Vegetable oils = yes
Oxidative Stability

• Low oxidative stability: oil will oxidize rather during use, becoming thick and polymerizing to a plastic-like or tar-like consistency

• Mineral Oil = Good
• Vegetable oil = Poor
Residue on Machines

• No standard tests

• Mineral oil = low residue, cleanable

• Vegetable oils = poor oxidative stability – may form very sticky residues and be very hard to clean

• Some vegetable oils are more stable than others
 – As measured by iodine value
 – Monounsaturated based oils are better (75% or higher)
Hydrolytic Stability

• Stability when exposed to water

• Mineral = Good – may for invert emulsions

• Vegetable oil = poor, breaks down to release acids
Pour Point

• Cold weather stability
 – Not really applicable to metalworking fluids

• Mineral Oil = minus 30 F
• Vegetable oils = +5 - +25F
Viscosity Index

- Maintains Viscosity at high temperature
- Viscosity Index (VI); for example, 223 for soybean oil vs. 90 to 100 for mineral oil
 - Higher number is better
- Mineral oil = fair
- Vegetable oil = very good
Misting from Machining Operations

• Mineral Oil = Medium
• Vegetable oil = low
Dermal Sensitivity

- Likelihood to cause Dermatitis
 - Mineral oil = known to cause dermatitis
 - Vegetable oil = minimal dermal issues
 - Again – Additives can be irritants
Carcinogenicity Potential

• Likelihood to cause cancer

• Mineral Oil = low if solvent refined and severely hydro treated

• Vegetable oil = naturally low
Can be recycled

Waste Infrastructure – Mineral Oil

- Mineral Oils
- Comes From a Variety Of Sources
- Manufacturing Plant
- Evaporation
 - Loss
 - Parts
 - Chips
- Oily Waste Water
- Loss
- Wastewater Treatment
- Treated Wastewater
- Oil Sludge
- Reclaiming
 - Re-Refining
 - Feed Stock For Reuse
- Incineration
- Feed Stock For Reuse

Reuse
Can be recycled – Maybe not

Waste Infrastructure – Mineral Oil + vegetable oil

Mineral oils come from a variety of sources + vegetable oils

Evaporation

Manufacturing Plant

Loss

Parts

Chips

Oily wastewater

Loss

Loss

Treated wastewater

Reclaiming

Re-Refining

Incineration

Viscous sludge

Landfill

Feedstock for reuse???
What about cost

• Base stock cost for vegetable oils generally track crude oil pricing
• Vegetable oils are generally more expensive
 – Mineral oil require multiple refining steps
 – Naphthenic oils are in limited supply, thus more costly
• Always exceptions to the rule
• Depending on the application and additive level, finished good price will vary
Summary – Vegetable Oils

- Vegetable Oils compete favorably with mineral oil
 - VOC, Lubricity, Dermal Sensitivity

- Additives needed to correct for
 - Pour point, oxidative stability, hydrolytic stability
 - Additives increase toxicity
 - Additive can increase dermal sensitivity

- May not be readily recycled
Comparison Chart

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Vegetable</th>
<th>Mineral</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Lubricity</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Flash Point</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Biodegradable</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Aquatic Toxicity</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Visible Sheen</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Renewable Resource</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Food Crop - Compete</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Oxidative Stability</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Machine / Part Residue</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Hydrolytic Stability</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Pour Point</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Misting</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Dermal Sensitivity</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Carcinogenic Potential</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Can Be Recycled</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

SCORE

- **Vegetable**: Score = 10
- **Mineral**: Score = 6
Summary

• Vegetable oils are in use right now
• Can meet manufacturing demands
• Disposal of residuals needs research
• Costs are generally higher for vegetable oils than mineral oils
Thank You

John Burke
Office 610 – 666- 4000 x 6169
Email Jburke@houghtonintl.com

Alan Cross
Office 610 666-4000 x 4124
Email across@houghtonintl.com